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A statistics-guided approach to dimensional quality characterization
of free-form surfaces with an application to 3D printing

Hao Wanga, Qiong Zhangb , Kaibo Wanga , and Xinwei Dengc

aDepartment of Industrial Engineering, Tsinghua University, Beijing, China; bSchool of Mathematical and Statistical Sciences, Clemson
University, Clemson, South Carolina; cDepartment of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

ABSTRACT
Free-from surfaces such as three-dimensional (3D) printing products play an important role
in customized production of manufacturing. Despite its popularity, 3D printing products
often suffer dimensional quality issues due to geometric deformation during the layer-by-
layer printing process. Different from traditional production, 3D printing products are often
customized and not for mass production, thus it is often difficult to designate tolerance
profiles to assess the production quality. To address this challenge, we propose a statistics-
guided approach to characterize the dimensional quality for free-form surfaces. The pro-
posed approach can provide local quality measures based on the original customized design
and the scanned profile of a printed product. It gives a unified scale of the quality assess-
ment measurements to conveniently compare the quality of products from different cus-
tomized designs. Case studies and simulation experiments show that, the proposed
approach can provide effective quality assessment and characterization for 3D printing.
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Gaussian process
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assessment; smoothing

Introduction

By computer-aided-design (CAD), free-form surfaces
play an important role in constructing 3D objects,
which further offers a number of flexibilities to sim-
plify the traditional manufacturing process. For
example, 3D printing, led by free-form surfaces from
CAD, produces customized surgical simulation mod-
els, prosthetics implants and surgery navigations (He
et al. 2006; Rengier et al. 2010; Chen et al. 2015).
However, 3D products often suffer from dimensional
accuracy challenges (van Baar et al. 2018; Mohammed
et al. 2016; Mazzoni et al. 2013; Cassetta et al. 2012),
which are among the most important issues in the
final parts. Mehra et al. (2011) summarize the accur-
acy characteristics of common types of 3D printers
and point out that some of them can produce 1-2mm
deviation. To meet the requirement of these high pre-
cision applications, it is desired to develop a quality
assessment strategy to characterize the dimensional
quality of free-form surfaces.

There are literature studies focusing on different
aspects of dimensional accuracy evaluation of free-
form surfaces. Li and Gu (2004) review general tech-
niques to inspect free-form surfaces; Babu, Franciosa,
and Ceglarek (2019) develop a spatio-temporal

adaptive sampling method to effectively measure the
free-form surface. Lasemi, Xue, and Gu (2010) analyze
quality insurance of the CNC machining of free-form
surfaces from the view of machining tool path and
orientation. Another aspects about the dimensional
deviation of free-form surfaces comes from geometric
dimensioning and tolerancing (GD&T). Several papers
(Krulikowski 1998; Ameta et al. 2015; Mahmood,
Qureshi, and Talamona 2018) relate statistical meas-
ures with the design tolerances in 3D printing objects.
However, it is often difficult to designate design toler-
ances for customized free-form surfaces such as 3D
printing objects. Hence, the GD&T related techniques
are not applicable in the quality control of free-form
surfaces. Moreover, different from the traditional
manufacturing, the deviation sources of 3D printing
products are also from the dynamics of the thermo-
mechanical processes of materials, which will cause
layer adhesion, and geometric shrinkage and warping
(Turner and Gold 2015; Ameta et al. 2015). Armillotta
(2006) examines 3D printing surface quality from the
layers and build orientations. However, existing stud-
ies are still far from sophisticated to assess dimen-
sional quality of free-form surfaces.
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In quality monitoring of free-form surfaces, Zang
and Qiu (2018a,2018b) are among the most significant
studies to provide quality control methods for 3D
printing free-form surfaces. Note that their study is to
analyze the whole surface quality in sequential and
identical 3D printing process. Pechenin, Bolotov, and
Rusanov (2014) adopt wavelets method to deal with
profile-form and shaped free-form surfaces.
Poniatowska (2009) analyzes the spatial autocorrel-
ation of free-form surface deviations, and shows that
there are significant spatial autocorrelation in the
manufacturing of 3D free-form surfaces. However, the
dimensional quality criterion in those studies are often
defined as global criteria, whereas the quality
heterogeneity in different areas has not been fully
investigated. For quality assessment of free-form sur-
faces, it is critical to provide local quality measures,
which often relies on the development of deform-
ation models.

Sabbaghi et al. (2014) and Huang (2016) discuss
the functional form of deformation models to charac-
terize the cookie-like or cylinder-like outer-bound
deformation and provide compensation based on
polar coordinates. The unknown parameters in their
deformation models can be determined based on the
data collected from 3D scanning of the printed
products. As an extension, Luan and Huang (2015)
propose polygon and circular approximations for two-
dimensional free-form products. The profiles of 2D
design can be designated by explicit functions,
whereas it cannot be applied to most of the irregular
3D computer-generated designs. Therefore, it is chal-
lenging to develop an appropriate and flexible model
to characterize the dimensional quality by extending
2D profiles to 3D objects.

The main contribution of this work is to develop a
framework for the dimensional quality characterization

on local areas of free-form surfaces, which can be
applied to many real production scenarios, include 3D
printing process. We propose to model the deformation
of free-form surfaces by Gaussian process. Based on col-
lected 3D scanning data, the proposed model can pro-
vide deviation estimate over the entire surface. A self-
adaptive L2 penalized smoothing algorithm and a mul-
tiple testing approach are used to generate the quality
characterizations and provide quality evaluation of local
areas. The proposed framework provides standardized
quality assessments for 3D printing surfaces. The merits
of the proposed dimensional evaluation and assessment
are elaborated through several 3D printing applications.

The remainder of the manuscript is organized as
follows. Section “Gaussian process based deformation
model” describes the Gaussian process based deform-
ation model; Section “Quality assessment and charac-
terization” proposes the dimensional quality
characterization approach. Sections “Case study I” and
“Case study II” provide case studies to validate the
assumptions for geometric deformations and show the
effectiveness of the proposed approach. Section
“Simulation study” shows additional simulation
experiments using synthetic data sets. We conclude
this paper with a discussion in Section “Discussion.”

Gaussian process based deformation model

This section introduces a Gaussian process approach
to characterize the dimensional deviation of 3D print-
ing. Previous studies in machining process only con-
sider the dimensional errors from the probing
direction (Desta, Feng, and Ouyang 2003; Xia, Ding,
and Wang 2008). However, as pointed by Xiao et al.
(2018), the geometric of 3D printing parts are signifi-
cantly affected by the building direction, which
implies that all the dimensional features have a com-
mon datum reference. Therefore, for parts with con-
tinuous surfaces, characterizing from the building
direction is reasonable. We adopt the Cartesian coor-
dinates system ðx1, x2, yÞ to characterize the geometric
shape of the 3D design, where y is the building direc-
tion and (x1, x2)–plane is the datum reference. Let
ypðxÞ be the printed object based on the design sur-
face ydðxÞ: The design surface is denoted by ydðxÞ,
where x ¼ ðx1, x2Þ 2 D, and D is the domain of the
design surface. Without loss of generality, we assume

that D ¼ ½0, 1�2: Thus, after registration, the deform-
ation is characterized by dimensional deviation along
the y-axis.

As shown in Figure 1, the dimensional deviation
on location x can be defined by

Figure 1. Illustration of dimension deviation of a 3D printing
surface, y is the building direction and (x1, x2)–plane is the datum
reference. dðxÞ is the dimensional deviation on location x:
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dðxÞ ¼ ydðxÞ � ypðxÞ, for any x 2 D: (1)

A positive dðxÞ indicates the surface shrinkage,
whereas a negative dðxÞ indicates the surface inflation.
By 3D scanning of a printed product, we are able to
obtain the measures of ypðxÞ over a discrete domain
PN � D of size N. Thus the deformation value dðxÞ
can be calculated directly over PN :

To characterize the spacial dependence on the
deformation surface and conduct statistic tests, we
model dðxÞ as a Gaussian process

dðxÞ � GPð0, r2kðx, x0; hÞÞ, (2)

where the global mean is assumed to be zero,
kðx, x0; hÞ is a correlation function, and r2 is the glo-
bal variance. In this study, we adopt a separable expo-
nential correlation function as

kðx, x0; hÞ ¼ exp ð�h1jx1 � x01j � h2jx2 � x02jÞ, (3)

where h ¼ ðh1, h2Þ is the correlation parameter.
Computational detail of parameter estimation is
deferred to Appendix A. The use of Gaussian process
(GP) is a convenient way to model the spatial depend-
ency on the deformation surface. Though the GP is a
nonparametric method in nature, it provides a para-
metric framework to conduct hypothesis testing and
make inference.

Choosing appropriate correlation function for GP
has been discussed in literature (Diblasi and Bowman
2001; Maglione and Diblasi 2004; Paulo 2005). Bayarri
et al. (2007) discuss the validation of using separable
exponential correlation in computer experiments. In
our application of the fused deposition modeling
(FDM) 3D printing process, due to the nozzle moving
along a specific direction, there could exist covariance
heterogeneity along x1 and x2 axis. For other kinds of
selective laser sintering (SLS) technique, it can also
contain heterogeneity because the laser beam sweeps
along a specific direction. Thus, it would be beneficial
to consider the potential heterogeneity from both x1
and x2 directions in the printing process. Here we
adopt the separable exponential correlation function
to provide different measures of the strength of
dependence along these two directions. The values of
h1 and h2 can be viewed as a weighting scheme with
respect to the horizontal and vertical axes.

Another reason of choosing the covariance function
in (3) is to facilitate the computation for parameter
estimation. As explained in Appendix A, the fast par-
ameter estimation is very simple after computing a
matrix M. In addition, the spatial structure in our
application is dense in comparison with other applica-
tions. The collected samples are also quite intensive.

Consequently, the results of the Gaussian process are
not so sensitive to the selection of covariance func-
tion. We will validate this point in the case study in
Section “Case study I.”

It is worth noting that the test domain PM can be
easily established on a regular grid. The original
scanned data of a 3D printing product are usually not
in a regular grid since the angle of illumination will
change in the scanning process. However, due to the
high precision of the laser scanner, we will obtain a
relatively dense point cloud after measurement. Thus,
we can reconstruct a regular grid from the original
irregular datasets. Since the density of the original
data is sufficient, the extraction of grid data will not
introduce significant error. In our application, the
absolute distance between the exact extracted location
and the ideal extracted location is controlled to be
smaller than 0.04mm, which is smaller than the preci-
sion of the laser scanner (0.05mm).

Let Dy be a vector of size N collecting the deviation
values dðxÞ for all x 2 PN : Based on the Gaussian
process model fitted by Dy, we evaluate the deviation
over a test domain PM � D of size M. Let

PM¢fx�1, :::, x�Mg, and d ¼ ðdðx�1Þ, :::, dðx�MÞÞ> be the
deviation vector over the test domain PM: There can
be different focuses on the test domain. In some scen-
arios, the focuses are on several specific locations, for
example at some critical dimensions. In other scen-
arios, they may focus on uniformly distributed dimen-
sional quality. The proposed quality evaluation
framework provides this flexibility to establish test
domain as needed. Note that extrapolation should be
avoided. Thus, the test domain should be included in
the measurement domain. Under the Gaussian process
assumption in (2), the best linear unbiased predictor
of dðx�i Þ can be expressed by

d̂ðx�i Þ ¼ rðx�i Þ>R�1Dy, (4)

where rðx�i Þ¼½kðx�i ,x1;hÞ,:::,kðx�i ,xN ;hÞ�> with x1,:::,xN
be the points in PN , and R is an N�N the correlation
matrix over the domain PN :

Based on the Gaussian process model, the esti-

mated deviation d̂ ¼ ðd̂ðx�1Þ, :::, d̂ðx�MÞÞ follows a
multivariate normal distribution with a covariance

matrix Rd̂ : Also, each d̂ðx�j Þ has mean and variance

as:

Eðd̂ðx�j ÞÞ ¼ rðx�j Þ>R�1EðDyÞ ¼ 0

Varðd̂ðx�j ÞÞ ¼ r2rðx�j Þ>ðR�1Þrðx�j Þ
It can be converted to a z-statistic following the stand-
ard normal distribution:
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zj¢
d̂ðx�j Þ � Eðd̂ðx�j ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðd̂ðx�j ÞÞ
q � Nð0, 1Þ: (5)

We further develop the quality characterization based
on the normality of the predicted deviation.

Quality assessment and characterization

Processing of original Z-statistics

The dimensional quality of the printed object can be
different in local areas. We propose a multiple testing
based approach to assess and characterize the local
quality in this Section. Before conducting assessment,
zj should be processed in advance. The reasons are
stated as follows. An absolute value of zj larger than a
threshold value indicates a significant geometric
deformation on location j. However, when the test
domain is too dense, or due to the insufficient preci-
sion in the measuring process, noises exist in the
evaluation results. Due to the noise, the signals are
not automatically separated into continuous local
regions, there might be discrete signals appearing in
some local areas, as demonstrated in Figure 2. To
remove the noise, we develop a local smoothness algo-
rithm to de-noise the signals before local qual-
ity assessment.

We scale the value of the original z-statistics in (5)
by nonparametric smoothing. There are two reasons
that we do not apply a parametric model to character-
ize the underlying deformation. First, compared with

local smoothing method, a parametric model needs a
stronger assumption for the functional form of
deformation, which is not available for customized 3D
printing. Second, local smoothing is more preferential
in maintaining the local features of the deformation
information. Further discussions can be found in
Walker and Wright (2002).

We would remark that the cubic smoothing spline
is a well-known method for curve fitting, of which
the challenge is on the selection of knots and
smoothing parameters. Our proposed method is
designed for relatively sparse and regular gird. Based
on the robust GCV algorithm designed on lattice in
Section “An algorithm to determine the smooth
parameter,” the smoothing spline method appears
being suitable to generate more reasonable smooth-
ing results.

We propose an L2 penalized smoothing approach
to remove the inherent noise in the test statistics z ¼
½z1, :::, zM�: Under a pre-specified smoothing param-
eter s, the smoothed test statistics zðsÞ is defined as the
minimizer of the L2 penalized residuals sum-of-square
(RSS) of the original z :

zðsÞ ¼ argmin
~z2RM

XM
j¼1
fzj � ~zjg2 þ s

XM
j¼1
fd2ð~zjÞg2

8<
:

9=
; (6)

where d2 indicates the second-order difference at loca-

tion j, and ~z ¼ ð~z1, :::,~zMÞ> is a vector collecting the
linear parameters. The RSS term in (6) maintains the
original quality information in z, and the L2 penalty

Figure 2. Significant test results based on zj values. Discrete insignificant locations scattered in significant locations. The significant
and un-significant results are also shown by light and dark spots on the test locations.
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term controls the degree of smoothness. As s
increases, the level of smoothness increases. According
to Tepper and Sapiro (2012), the L2 penalty is more
sensitive to extreme values than the L1 penalty.
Therefore, the quality information about z will not be
eliminated by over smoothing. Notice that, (6) is a
special case of the smoothing spline estimation (see
for example, Green and Silverman 1993).

Then the objective function in (6) can be rewritten
as

zðsÞ ¼ argmin
~z2RM

fðz � ~zÞ>ðz � ~zÞ þ s~z>D>D~zg: (7)

where D is a matrix providing the information of
second-order difference. For a test domain with M

locations, D is a matrix with 2
ffiffiffiffiffi
M
p ffiffiffiffiffi

M
p � 2
� �

rows
and M columns. Each row of D indicates a second-
order difference along the two directions of the test
domain. As illustrated with Figure 3, for the j-th
row, Dij ¼ �2 indicating that j is the current site on
which the difference is being calculated, whereas
Dij0 ¼ 1 indicating that j0 is the site adjacent to the
site i.

Given s, the smoothed statistic zðsÞ in (7) can be
efficiently obtained by the eigen-decomposition of
D>D, i.e.,

zðsÞ ¼ ðIM þ sD>DÞ�1z ¼
�
IM þ sUdiagðk1, :::, kMÞU>

��1
z ¼ AðsÞz

(8)

where AðsÞ ¼ UK�1ðsÞU>, and KðsÞ is a M�M
diagonal matrix with i diagonal entry 1þ ski:

An algorithm to determine the smooth parameter

In this section, we develop an algorithm to determine
the smooth parameter s. We adopt a RGCV (Robust
Generalized Cross-validation) measure, originally pro-
posed by (Lukas 2006), to choose the optimal smooth
parameter s:

soptðcÞ ¼ argmin
s

�V ðs; cÞ
¼ argmin

s
fcVðsÞ þ ð1� cÞFðsÞg, (9)

where

VðsÞ ¼ MjjfI � AðsÞgzjj2
tr2fI � AðsÞg , FðsÞ ¼ trfAðsÞ2gVðsÞ=M,

and c is the robust parameter. By including F(s) into the
selection criterion, RGCV penalizes the values of s that
are close to 0. As c gradually decreases from 1 to 0, the
optimal soptðcÞ become more robust and less likely to be
a small value. This combination can provide a tradeoff
between maintaining original signals and the final
smoothing effect. The choice of c is greatly associated
with the data. It can be determined by observation as
described in Lukas (2006). In our study, the choice of c
can be greatly different on datasets collected from dif-
ferent 3D design models. To avoid manually searching
the ideal values of these parameters, we develop an
auto-selection procedure to choose the robust param-
eter c and the smooth parameter s.

The proposed auto-selection procedure can be
described in four steps: (1) designate sequences C ¼
½c1, :::, ck, :::, cK � and S ¼ ½s1, :::, si, :::, sI� as the search
spaces of s and c, respectively; (2) for each ck 2 C,
obtain soptðckÞ ¼ argmins2S �V ðs; cÞ; (3) calculate the
shift HðkÞ at the current step by

HðkÞ ¼ 2jsoptðckþ1Þ þ soptðck�1Þ � 2soptðckÞj
jckþ1 � ck�1j

;

(4) choose optimal c� ¼ ck� when the shift HðkÞ
becomes stable, i.e.,

k� ¼ minfk 2 2, :::,K � 1½ � jHðkÞ < hg, (10)

where h is a pre-specified threshold value. To illus-
trate the selection procedure, Figure 4a shows the
relationship between the shift of optimal s and c,
whereas 4(b) provides different RGCV paths, and
indicates that our procedure can choose a proper
robust parameter c. Since changes in sopt will be
insignificant when c is large enough, the result is not
sensitive to the choice of the threshold h. We fix h to
be 0.05 in our case studies and numerical experi-
ments. The procedure to determine the smoothing
parameter and the robust parameter is summarized
in Algorithm 1.

Figure 3. A 3� 3 regular grid and corresponding matrix D:
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Algorithm 1: Choose proper c� 2 C

Input: data size M, original z�, edge indicate matrix
D, Eigen decomposition D>D ¼
Udiagfk1, :::, km, :::, kMgU 0, Searching
sequence S ¼ ½s1, :::, si, :::, sI�, Searching
sequence C ¼ ½c1, :::, ck, :::, cK �

Output: Proper robust parameter c� 2 C:
Init: sopt  vecðKÞ,H vecðKÞ, c, k�, c�
for k 1 to K do

c ¼ ck
V  vecðIÞ; trA2  vecðIÞ; uz  U>z�; sopt; i�

for i 1 to I do

VðiÞ  M�1
PM

m¼1 kmðuzðmÞÞ
2

ðM�1
PM

m¼1 sikm=ð1þsikmÞÞ
2

trA2ðiÞ  PM
m¼1 1=ð1þ sikmÞ2

i�  argminif½cþ ð1� cÞtrA2ðiÞ=M�VðiÞg
soptðkÞ  si�

for k 2 to K � 1 do

Hk  jsoptðkþ1Þ�2soptðkÞþsoptðk�1Þj
jckþ1�ck�1j=2

k� ¼ minfk 2 ½2, :::,K � 1�j HðkÞ < hg
c� ¼ ck�
return {c�}

Statistics guided quality assessment and
characterization

As described in Section “Gaussian process based
deformation model,” we obtain the estimated devi-

ation vector d̂ ¼ ðd̂ðx�1Þ, :::, d̂ðx�MÞÞ in (4) over the test

domain PM: Based on d̂, we propose a multiple
hypothesis testing approach to assess the local quality
of the printed object. For local area with good quality,

the expected value of d̂ðxÞ is zero. Therefore, for each
location j ¼ 1, 2, :::,M in PM , we test the hypothesis:

Hj0 : Eðd̂ðx�j ÞÞ ¼ 0 v:s: Hja : Eðd̂ðx�j ÞÞ 6¼ 0: (11)

According to the Gaussian assumption in (2), zj in (5)
is the test statistic of Hj0: A higher absolute value of zj
indicates lower local quality and severer geometric
deformation.

For quality assessment purpose, the goal is to
obtain p-values of Hj0 in (11) for j ¼ 1, :::,M: Define
Ej as “reject Hj0 when Hj0 is true”. The family-wise

error rate (FWER)
PM

j¼1 PðEjjH0jÞ is used to provide

the family-wise rejection criteria cm. Notice that, the
smoothed test statistics zðsÞ can be expressed by

zðsÞ ¼ AðsÞz ¼ AðsÞD�1=2g d̂¢Fd̂, (12)

where Dg¼diagfVarðd̂ðx�1ÞÞ,:::,Varðd̂ðx�MÞÞg: Therefore,
zðsÞ follows a multivariate normal distribution with mean
zero, and covariance matrix FRd̂F

>: Since the correla-
tions between test statistics are ignorable in our problem,
we adopt the method in Efron (2004, 2007) and Efron
(2012) to tackle the correlations in multiple testing.

Given the null hypothesis in (11), controlling the
FWER under the significant level a is equivalent to
find a threshold cm, such that

XM
j¼1

PðEj jH0jÞ ¼ Probðat least one Hj rejectj H0Þ

¼ ProbðmaxfjzðsÞj jg > cmj H0Þ
¼ 1� ProbðjzðsÞ1 j � cm, jzðsÞ2 j � cm, :::, jzðsÞM j � cmj H0Þ
¼ 1�

ðcm
�cm

:::

ðcm
�cm

f ðzðsÞÞdzðsÞ1 dzðsÞ2 :::dzðsÞM ¼ a

(13)

Figure 4. An illustration of auto-selection of RGCV parameters.
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where f ðzðsÞÞ is the probability density function of zðsÞ:
For small M, the threshold cm can be calculated using
the exact distribution of the maximum value of corre-
lated random variables as in Arellano-Valle and
Genton (2008). However, solving the explicit integral
expression under extreme high dimension (i.e., in our
case study, z contains 2500 entries) is nearly impos-
sible. Hence, we adopt the integral transformation
proposed by Genz (1992) and use numerical Monte
Carlo method to find the threshold cm.

The smoothed test statistics zðsÞ for the hypothesis
in (11) directly assess the local quality of 3D printing
surface. In quality characterization, it is often desired
to obtain quality measures bounded between 0 and 1.
Therefore, we transfer zðsÞ into p-values to meet with
this requirement. Based on cm, the adjusted p value or
scaled local quality measure can be expressed by

qj¼qðb1,b2,b3;jzðsÞj jÞ¼b1�b2e�b3jz
ðsÞ
j j2 for j¼1,2,:::,M

(14)

where b1,b2,b3 can be found by three constraints: (1)

qj ¼ 1 when jzðsÞj j¼0; (2) qj ¼ 0 when jzðsÞj j!1; and

(3) qj¼0:05 when jzðsÞj j¼cm: It is easy to obtain that

b1¼0,b2¼�1 and b3¼�logðaÞ=c2m: Then we express

qj¼aðz
ðsÞ
j Þ2=c2m as the scaled quality measure on test

site j.

Case study I

This section provides a case study to show that the
proposed approach can effectively assess the local
quality of 3D printing surfaces.

Experimental setting

The 3D printing datasets with respect to the designed
surface ydðxÞ and the printed object ypðxÞ are col-
lected from two different mechanisms. Specifically, the

designed surface is constructed through 3D
Computer-Aided Design (CAD) in Rhinoceros 5 SR14
64-bit (version 5.14.522.8390), whereas the data points
in the printed object are obtained from a 3D laser
scanning equipment.

The laser scanner used for surface measurement is
of a precision equal to 0.05mm. For registration, we
adopt the iterative closest point (ICP), a wide-used
method for the accurate and computationally efficient
registration of 3D shapes (Besl and McKay 1992;
Zhang 1994). During this process, the registration
error decreases. Generally, after some iterations, the
square root difference between two iterations becomes
lower than a given threshold, then the iteration is ter-
minated. We also adopt ICP as a registration tool in
the following research. The registration errors in our
case studies are control by a root mean square less
than 0.08mm.

The 3D printer used in this study is the Makerbot
Replicator 2X desktop. Poly-lactic acid (PLA) is used
as the printing material. This material has good mech-
anical properties and is eco-friendliness (Jo et al.
2012). The printer uses Fused Deposition Modeling
(FDM) technology (Gibson et al. 2010; Guo and Leu
2013) to form the products. A thread of a plastic fila-
ment is heated and adhered to a substrate before it is
solidified. In this way, a new layer is formed grad-
ually. The layer height and the infill proportion can
be adjusted according to the required precision level.
The specified parameters of the printer are provided
in Table 1. The size of the printed object in our
experiment is 49mm � 49mm with a 63mm �
63mm square bottom, as illustrated in Figure 5. The
unit of the surface topography is millimeter in
this paper.

Our experiment is described as follows. We first
print a 3D surface under a lower precision with layer
height equal to 0.3mm and the infill parameter equal
to 10%. This printed object is referred to as S1 here-
after. Note that the geometric deformation is reprodu-
cible. We print three copies of the same 3D surface,

Table 1. The specified parameters of the 3D printer for our
experiments.
Print Technology Fused Filament Fabrication

Build Volume 24.6cm Width
16.3 cm Length
15.5 cm Height

Layer Height Settings High 100 Microns
Medium 200 Microns
Low 300 Microns

Positioning Precision XY: 11 microns
Z: 2.5 microns

Filament ABS or PLA Plastic
Filament Diameter 1.75mm
Nozzle Diameter 0.4mm
File Types STL, OBJ, Thing

Figure 5. Original CAD models of the surface.
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i.e., S1, a and S1, b and S1, c are three printed objects of
S1: The measured deviations are shown in Figure 6.
They all suffer from severer shrinkage in some steep
areas of the design surface. It validates that, under
same machine settings, the deformations of the
printed objects resemble each other, and the corre-
sponding compensation design should be relatively
stable across different replications under a fix machine
setting. The reason is that, an object using the same
machine, the same material, and the same printer-sup-
ported document, nearly all the inaccuracy causes
during the preprocess (such as format converting
errors), in-process (such as the positioning capability,

temperature controlling) and post-process (such as
contraction with cold and residual stress-induced dis-
tortion) are repeatable. Therefore, the warping and
deformation due to these reasons should share same
characters in the next print cycling. In the rest of this
case study, we focus on discussing the results from
the first replicates, i.e., S1, a:

According to the characterization results of S1, a
(denoted by S1 in the following), we adopt a min-
imum squared distance optimization method on the
y-axis to compensate the original design. That is, we
supplement the original CAD model from the y-axis
according to the measured shrinkage values to

Figure 6. Three replicates of S1:

Figure 8. Deformation dðxÞ of the three surfaces.

Figure 7. Picture of printed object S1(left), S2(middle) and S3(right).

728 H. WANG ET AL.



Figure 9. Semi-variogram plots along x1 and x2 directions from S1 (top panel), S2 (middle panel) and S3 (bottom panel).
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Figure 10. Quality measure qsm with significant marker, adopting proposed adaptive RGCV smoothing method to z:

Figure 11. Direct quality measure q from z, do not apply any smoothing.

Figure 12. Quality measure qFl with significant marker, adopting fused lasso method to z as a benchmark.

Figure 13. Quality measure qHaar with significant marker, adopting 2D Haar wavelet to z as a benchmark.
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generate the compensated surface, denoted by S2: For
comparison purpose, the same surface is also printed
under a higher precision setting with layer height
equals to 0.1mm and the infill parameter equals to
20%. The printed object under this high precision is
referred to as S3: Our analysis is based on the three
surfaces, which is shown in Figure 7. For each printed
object, the measured domain contains 10000 points,
and the test domain is a 50� 50 regular grid.

Experimental results

We assess the dimensional accuracy on the test loca-
tion and characterize their quality for the three surfa-
ces as shown in Figure 7. Figure 8 plots the original
measured deformation surfaces, i.e., dðxÞ in Eq. (1).
To validate the covariance function in (3), we report
in Figure 9 the semi-variogram plots along x1 and x2
directions of S1 - S3: The figure shows that the separ-
able covariance structure appears to be a reasonable
assumption for our experiments.

Figure 10 reports the final quality measure with
significant marker, after adopting our proposed adap-
tive RGCV smoothing method to z: The quality meas-
ures can directly indicate low quality locations. In
Figure 11, the low quality and high quality areas are
displayed by green and pink spots on the test

locations. The assessment result shows that, for S2,
the dimensional deviation is not significant in most
areas. Compared with S2, S1 and S3 contain significant
local quality issues due to dimensional deviation.
Besides, the heat maps of the scaled quality measure q
provide a direct quality assessment within the region
of interests. By comparing the quality measures, our
method can effectively identify the quality difference
between the printed objects under low precision set-
ting and high precision setting. Also, by comparing
the quality of S1 and S2, the quality of S2 is signifi-
cantly improved after compensation. It is seen that
the quality of compensated low precision surface S2 is
better than the quality of the high precision surface S3
without compensation.

To better evaluate the performance of the proposed
method, we consider two benchmark methods based
on Tibshirani and Taylor (2011) and Fu,
Muralikrishnan, and Raja (2003). Tibshirani and
Taylor (2011) considered the 2D fused lasso method
in spatial (and image) data, while Fu, Muralikrishnan,
and Raja (2003) adopt wavelet method to extract the
roughness of engineering surfaces. These two
approaches will be used as alternatives of our pro-
posed RGCV method with L2 smoothness penalty to
process the original z statistics in Section “Quality

Table 2. The global quality measures in (15) associated with
the surface quality measures in Figures 10–13.

�qPM

Methods S1 S2 S3
qsm (proposed) 0.1906 0.3450 0.1971
q 0.1899 0.3388 0.1988
qFl 0.0648 0.6371 0.1080
qHaar 0.1882 0.3453 0.1969

Figure 14. The Design model, the picture of printed objects and the assessment domain.

Table 3. The global quality measure in the test domain for the
three repeatedly printed objects before compensatory adjust-
ment (denoted by S4) and the corresponding compensated sur-
faces after compensatory adjustment (denoted by S5).

�qPM

Replication S4 S5
1 0.4648 0.8723
2 0.2383 0.9404
3 0.5023 0.9010
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assessment and characterization.” Note that in the
fields of 3D printing free-form surfaces, we have not
found direct comparable method in the literature. The
dimensional quality evaluation is usually terminated at
a deviation estimate on some specific spatial locations,
or described as some global indices.

Let us denote q to be the quality results generated
from the original z statistics. The quality results gen-
erated from our proposed method are denoted by qsm:
By adopting the 2D fused lasso method to the original
z statistics, we obtain a spatial fused statistic zFl before
generating quality measure qFl: By adopting the 2D
Haar wavelet method to the original z statistics, we
obtain a filtered statistic zHaar before generating qual-
ity measure qHaar: Figure 11–13 illustrate the quality
results of qFl, qHaar, q and qsm: A metric �qPM is used

to provide a global quality measure by summarizing
the local quality in the test domain PM :

�qPM ¼
PM

i¼1qi
M

: (15)

The global quality measures associated with Figures
10–13 are given in Table 2. Same as the original local
quality measure, the global quality measure ranges
from 0–1 with 0 demonstrating low quality and 1
demonstrating high quality. Table 2 shows consistent
assessment results of the three surfaces from differ-
ent methods.

From Figure 11, it is seen that, without smoothing
of z, the significant low quality areas contain a large
amount of noise, and there are many discrete signifi-
cant locations. However, when adopting fused lasso
method in Figure 12, many nearby locations are
forced to have equivalent quality measures. The sig-
nificant areas can no longer reflect the original quality
information. From Figure 13, it appears that Haar

Figure 15. Quality evaluation results from the printed object without compensatory adjustment.

Figure 16. Quality evaluation results from the printed object with compensatory adjustment.

Figure 17. The three types of deformation in simulation studies.
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wavelet method performs better than fused lasso
method. But it still cannot formulate smooth bound-
ary as our proposed method in Figure 10. Compared
with benchmark methods, the proposed quality assess-
ment scheme can provide more accurate local qual-
ity measures.

Case study II

In this section, we provide another case study based on
a bio-medical application to show that the proposed
scheme can deal with complex applications. This case
study comes from the 3D printing of a human femur
malleolus. Here the printed object can be used as part of
the navigation plates in the surgery, so it is critically
important to control the deformations.

As shown in Figure 14a, after designating a refer-
ence plane, we still adopt the Cartesian coordinates
system ðx1, x2, yÞ to characterize the geometric shape
of the 3D design. Based on previous practices, we des-
ignate a critical area as the test domain on the surface,
shown in Figure 14b. The dimension deviation quality
of the surface are characterized on a 48� 16 regu-
lar grid.

In this study, we compare the dimensional quality
before and after applying the compensatory adjust-
ment based on the measured deviation. The assess-
ment surface before compensatory is referred to as S4,
whereas the surface after compensatory is referred to
as S5: They are printed under the same precision with
layer height equal to 0.2mm and the infill parameter
equal to 15%. The printer is the same as the one in

Figure 18. Average results of 100 replications under h1 ¼ h2 ¼ 25 and r2 ¼ 0:04 on three types of deformation.
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the previous case study. Acrylonitrile-butadine-styrene
(ABS) is used as the printing material. We perform
multiple repetitions for this experiment. The global
quality measures in (15) are provided in Table 3. We
find that after adopting a compensatory adjustment,
the overall quality has been significantly improved.

Besides the above global metric, here we use the
first replication as an example to visualize results of
our dimension deviation quality characterization.
Figure 15 depicts the quality measures of S4 without
compensatory adjustment. Figure 16 provides the cor-
responding results of S5 after adopting a compensa-
tory adjustment. Using the same printing precision as
before, the dimensional accuracy of the compensatory
adjusted object is significantly improved. The results

demonstrate that, the proposed procedures are effect-
ive for characterizing dimensional deviations in this
bio-medical application.

Simulation study

This section evaluates the impact of smoothing original
z-statistics before quality assessment. Simulation
experiments are provided based on synthetic data with
different levels of overall variance (r2) and spatial
dependence (h). Without loss of generality, we directly
generate the deformation surface dðxÞ as a realization of
Gaussian process with mean function lðxÞ and covari-
ance function covðx1, x2Þ ¼ r2 exp f�h1jx11 � x21j �
h2jx12 � x22jg: The mean function lðxÞ are generated

Figure 19. Average results of 100 replications under h1 ¼ h2 ¼ 73 and r2 ¼ 0:15 on three types of deformation.
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under three different schemes: (a) continuous, lðxÞ ¼
0:1ð sin ð5x1Þ þ cos ð5x2Þ þ 2 exp ðx1x2ÞÞ; (b) discrete,

lðxÞ ¼ 0:1Iððx1 � 1=2Þ2 þ ðx2 � 1=2Þ2 < 0:3Þ; (c) com-
bination, lðxÞ ¼ 0:1ð sin ð5x1Þ þ cos ð5x2Þ þ 2 exp

ðx1x2ÞÞ Iððx1 � 1=2Þ2 þ ðx2 � 1=2Þ2 < 0:3Þ: The three
types of deformation are depicted in Figure 17.

Given the Gaussian process parameters (h1, h2) and
r2, we generate 100 realizations of the deformation
surface dðxÞ, and calculate the local quality statistics
zðsÞ and quality measure q for each realization. The
deformation surface dðxÞ is generated on a 50� 50
grid, and evaluated on a 25� 25 test domain. We use
average results to summarize the testing power and
the assessment results.

Figures 18–20 provide the quality assessment results
for the three schemes under three different parameter
settings of the Gaussian process parameters (h1, h2) and
r2, respectively. Particularly, h1 ¼ h2 ¼ 25 and r2 ¼
0:04 in Figure 18, h1 ¼ h2 ¼ 73 and r2 ¼ 0:15 in Figure
19, and h1 ¼ h2 ¼ 49 and r2 ¼ 0:26 in Figure 20. Notice
that h is associated with the strength of spatial correl-
ation, and r2 is associated with the overall variation level.
Figure 18 represents the results when the noise level is
relatively low. The left penal in Figure 18 show that the
un-smoothed z values are noisy over the test domain. As
the variation increase, Figures 19 and 20 show that the
un-smoothed results become more unstable. After
smoothing the original z-statistic, the noise in z values is

Figure 20. Average results of 100 replications under h1 ¼ h2 ¼ 49 and r2 ¼ 0:26 on three types of deformation.
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removed while the shapes and characters of the deform-
ation are clearly presented. The smoothed zðsÞ statistics
and the scaled quality measures q effectively recover the
underlying noises in the assessment process.

Discussion

In this work, we propose a statistics-guided approach for
characterizing free-form surfaces, especially in the appli-
cation to 3D printing objects with continuous surface
based on 3D scanning data. The proposed method con-
tains two key steps: a Gaussian process model is used to
interpolate the dimensional deviation on the test domain
for generating test statistics z, and a spatial second-order
difference penalty approach is developed to smooth the
original quality test statistics z: The quality assessment
scheme generates continuous significant and insignifi-
cant areas. The scaled quality measure q provides direct
quality viewing among different objects. The case study
shows that the proposed procedures are effective for
assessing dimensional quality.

We remark that the proposed quality assessment pro-
cedure can be implemented efficiently in terms of com-
putational efforts. The proposed method can be easily
extended to quality assessment in some critical areas by
constructing test domains and designating weights to
emphasize on the evaluation of those critical areas.
Moreover, this framework provides good tolerance to the
different kinds of deformation process, since the spatial
dependence of the deformation is inevitable. This work
also provides reasonable quality assessment across differ-
ent surfaces. Though customized designs are different in
geometrical dimensions and the scanned equipment may
export point cloud data with different densities and
measurement errors, the test procedures can provide
comparable assessments.

It should be noted that, in this research we use height
to evaluate the dimension deviation, which is explicit and
convenient. Though this proposed method can be
applied to some other scenarios, it cannot be directly
applied to all kinds of 3D geometries. There are limita-
tions and challenges imposed by actual 3D geometries,
which can be our further research direction. Beside, the
use of Gaussian process (GP) needs a careful examination
on its model assumption. As a promising future direc-
tion, this issue can also be addressed by adopting other
flexible smoothing methods (Yang and Qiu 2018, 2019).
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Appendix A

Fast Gaussian process parameter estimation

Since the scanned data points ypðxÞ are approximately located
at a two-dimensional regular grid of size n1 � n2, we develop
a fast Gaussian process based parameter estimation approach
as follows. According to the Gaussian process model in (1),
the negative log-likelihood function with regard to the
unknown parameters r2 and h ¼ ðh1, h2Þ can be expressed by

‘ðr2, hÞ / N logr2 þ log jRj þ Dy>R�1Dy
r2

, (16)

where N ¼ n1 � n2 is the total number of data points col-
lected from the scanned surface. By minimizing ‘ðr2, hÞ
with respect to r2, we obtain that

r2ðhÞ ¼ Dy>R�1Dy
N

,

which can be substituted into (16). The object function of
the maximum likelihood estimation becomes

gðhÞ ¼ log jRj þ N log ðDy>R�1DyÞ: (17)

Since the N data points are collected on an n1 � n2 regular
grid, the correlation function in (3) lead to

R ¼ R1 	 R2,

where R1 is an n1 � n1 matrix with the i, k-th element
exp ð�h1jx1, i � x1, kjÞ, and R2 is an n2 � n2 matrix with the
j, l-th element exp ð�h2jx2, j � x2, ljÞ: Denote q1 ¼ exp ð�h1Þ
and q2 ¼ exp ð�h2Þ: According to the properties of
kronecker product and KMS matrix (Trench 2001), the
objective function in (17) can be reduced to

gðq1, q2Þ ¼ �
log ð1� q21Þ

n2
� log ð1� q22Þ

n1

þ log trðT1DYT2DY
>Þ, (18)

where DY is an n1 � n2 matrix with the i, j-th element Dyij:
Ti ¼ ð1� q2i ÞR�1i for i¼ 1, 2 is a tridiagonal matrix

Ti ¼

1 �qi 0 
 
 
 0

�qi 1þ q2i �qi 
 
 
 0


 
 

0 
 
 
 �qi 1þ q2i �qi
0 
 
 
 0 �qi 1

2
6666664

3
7777775
:

Notice that

Ti ¼ Tð0Þi � q
�
Tð1Þi þ ðTð1Þi Þ>

�
þ q2i T

ð2Þ
i ,

where Tð0Þi ,Tð1Þi , and Tð2Þi are ni � ni matrixes with Tð0Þi
been an identity matrix, Tð1Þi and Tð2Þi been

0 0
Ini�1 0

� �
and

0 0 0
0 Ini�2 0
0 0 0

2
4

3
5,

respectively. Therefore, trðT1DYT2DY>Þ in (18) can be
expressed by

trðT1DYT2DY
>Þ ¼ q>1 Mq2, (19)

where, for i¼ 1, 2, qi ¼ ð1, � qi , q
2
i Þ>, and M is a 3� 3

matrix with elements
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M11 ¼ trðDYDY>Þ, M12 ¼ tr
��

Tð1Þi þ ðTð1Þi Þ>
�
DYDY>

�
,

M13 ¼ tr
�
Tð2Þi DYDY>

�
,

M21 ¼ trðDY
�
Tð1Þi þ ðTð1Þi Þ>

�
DY>Þ,

M22 ¼ tr
��

Tð1Þi þ ðTð1Þi Þ>
�
DY

�
Tð1Þi þ ðTð1Þi Þ>

�
DY>

�
,

M23 ¼ tr
�
Tð2Þi

�
Tð1Þi þ ðTð1Þi Þ>

�
DYDY>

�
,

M31 ¼ trðDYTð2Þi DY>Þ
M32 ¼ tr

��
Tð1Þi þ ðTð1Þi Þ>

�
DYTð2Þi DY>

�
,

M33 ¼ tr
�
Tð2Þi DYTð2Þi DY>

�
:

By using the reduction in (19), the objective function for
maximum likelihood estimates, and its corresponding gradi-
ent functions can be expressed by

gðq1, q2Þ ¼ �
log ð1� q21Þ

n1
� log ð1� q22Þ

n2
þ logq>1 Mq2,

whose derivatives can be easily obtained. The matrix M
does not depend on q1 and q2. After computing the matrix
M, the computational costs of function evaluations of the
objective function and gradient functions will be extremely
simple. Therefore, the calculation of the maximum likeli-
hood estimates can be reduced greatly.
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